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Abstract 

Wing geometric parameters govern the aerodynamic performance 
of insects and micro aerial vehicles. Previous studies of wing 
shapes have been limited to rigid wings. The aerodynamic 
hovering performance of rigid and flexible wing shapes for 
aspect ratio AR = 1.5 is evaluated computationally at the 
Reynolds number (Re) of 400. The three-dimensional viscous 
incompressible Navier-Stokes equations are solved for rigid wing 
simulations using a sharp interface immersed boundary method 
(IBM) coupled with an in-house non-linear finite element based 
structure solver for flexible wing simulations. The wing shapes 
with different area distributions along the span are defined by the 
radius of the first moment of wing area (ݎଵഥ ). We model ݎଵഥ= 0.43, 
0.53 and 0.63 wings using a beta distribution. The results show 
that for a given shape, the flexible wing produces higher mean 
lift coefficient (ܥ௅തതത) at the cost of the power economy (PE, 
defined as the ratio between mean lift and aerodynamic power 
coefficients). Compared to the rigid wing, deformation in a high 
ଵഥݎ  flexible wing results in large variation in the pitch angle during 
flapping. Consequently, ܥ௅തതത is high during supination and 
pronation accompanied by a drop in ܥ௅തതത during the stroke reversal. 
Flexible wings produce a wider range of lift but require higher 
peak aerodynamic and inertial power inputs. For a given ܥ௅തതത, 
flexible wings require smaller ݎଵഥ  to produce the same 
aerodynamic performance as rigid wings.   

Introduction 

Inspired by extraordinary flapping flight modes found in nature, 
researchers continue to explore insect flight for developing 
insect-like micro aerial vehicles (MAV). The parameters of wing 
geometry, flexibility and kinematics are the key drivers of lift 
enhancement and flight efficiency. In this work, the scope is 
limited to the role of wing geometry (planform shapes only) and 
flexibility in hover.  

Phillips et al. [10] noticed similar flow topology on rigid generic 
wing shapes such as an ellipse, four ellipse, reverse ellipse and 
rectangle. Likewise, Ozen and Rockwell [9] also reported similar 
flow structures on the rectangular and fruit fly wings in their 
experiments. Consistent with these findings, the computational 
work of Luo and Sun [6] found less than 5% difference in the 
force coefficients of ten wing shapes based on a fruit fly wing. 
However, Ansari et al. [1] and Wilkins [13] mentioned that the 
wings with more area outboard, that is, towards the wing tip, 
produce more lift at the cost of high power requirements. In our 
previous computational work [11], the performance of ݎଵഥ= 0.43, 
0.53, 0.63 and rectangular wing was compared at Re = 12, 400 
and 13500. We found that despite the changes in flow structures 
like leading edge vortex (LEV), trailing edge vortex (TEV), root 
vortex (RV) and tip vortex (TV) at different Re, the performance 
trends remain Re independent. The ݎଵഥ= 0.43 wing is found to be 
the most efficient in terms of PE.  

It is worth mentioning that all the studies of wing planform 
shapes have been conducted with an assumption of the wings 
being rigid and a detailed analysis of flexible wing shapes has yet 

to be carried out. The aim of this study is to investigate the 
aerodynamic   performance of rigid and flexible wing shapes at 
Re = 400, based on the mean chord length (ܿ) and wing tip 
velocity ( ௧ܷ௜௣), to represent a range of insects and MAV. This 
work will not only improve our understanding of insect flight but 
also help in designing better wings for MAV.  
 
Wing Geometry and Kinematics 

The beta distribution wings [5] defined by ݎଵഥ  are a reasonable 
approximation of the wings of insects. We model ݎଵഥ  = 0.43, 0.53 
and 0.63 wings presented in figure 1, to represent a variety of 
wing shapes found in nature. For the simulation of rigid wings, 
the flexible part is also taken as rigid. A larger ݎଵഥ  indicates 
greater wing area towards the wingtip. 

 

Figure 1. Wing shapes. 

Unlike real insects, the ݎଵഥ  = 0.63 beta distribution wing has a 
pointed wing root as shown in figure 2. In order to make it closer 
to nature, the root shape has been modified, resulting in a small 
increase of approximately 3% in the area and AR. Since the wing 
root is close to the pivot point, this modification is not expected 
to influence the aerodynamic performance of the wing 
significantly.   

 

Figure 2. Modification of wing root on ݎଵഥ  = 0.63 wing.  

For simplification, we have assumed rigid leading edge (LE) and 
wing root (up to 0.25c from the LE) for fluid-structure interaction 
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(FSI) simulations, noting that the root and LE are the stiffest 
parts of insect wings [3, 4].  Future work will incorporate more 
realistic models of spanwise variation of leading-edge stiffness. 
The mass ratio (݉∗ሻ in equation (1), and the effective stiffness 
 in equation (2) are taken as 4 and 14 respectively. While this (ଵߨ)
value of ݉∗ is representative of a Hawkmoth, ߨଵ has been chosen 
such that the wing deformation is not influenced by structural 
resonance. The Poisson’s ratio (ߥ) of 0.3,  defined as the ratio 
between the transverse and axial strain, is used for the 
computations [3].  

																				݉∗ ൌ ௦݄௦ߩ ⁄௙ܿߩ                         (1) 

ଵߨ										 ൌ ௦݄ܧ
ଷ ሾ12ܿଷሺ1 െ ௙ߩଶሻߥ ௧ܷ௜௣

ଶൗ ሿ               (2) 

where ߩ௙ and ߩ௦ are the fluid and structure densities, ݄௦ the wing 
thickness and ܧ the Young’s modulus.  

 

Figure 3. Wing kinematics [10]. Grey shaded portion of t/T = 0.17-0.34 
and t/T = 0.67-0.84 shows the mid up and mid down strokes respectively. 

The advanced flip kinematics of Phillips [10] shown in figure 3 
have been used in the study. The advanced flip refers to the 
change in the orientation of the pitch angle before the stroke 
reversal at t/T = 0.5. The wing flaps in a horizontal stroke plane 
with a stroke angle (߶) defined by the sinusoidal function and it 
rotates about the LE with a pitch angle (ߙ) defined by the Fourier 
series. The stroke amplitude and the flapping frequency are 
56.35º and 20 Hz respectively.  

Computational Method 

The numerical method is based on a sharp interface IBM [12] in 
which the viscous and incompressible Navier-Stokes equations 
are discretized on a non-uniform Cartesian grid shown in figure 
4. The flow is assumed to be laminar and the fluid domain is a 
cube of 25c. For FSI simulations, the fluid dynamics is combined 
with the structure dynamics through the boundary conditions of 
no-slip, no penetration and traction conditions. The spars and 
membranes are approximated with frames and plates 
respectively. The stability of FSI coupling is improved by using 
implicit coupling based on staggered sub-iterations. Further 
details of the FSI solver can be found in Tian et al.	[12]. 

 

Figure 4. Computational domain. 

Validation 

Grid independence and time independence studies are conducted 
using a rigid ݎଵഥ  = 0.63 wing. The outer fluid domain has 50 
points in x, y and z directions. For grid independence, the mesh 
density of the inner fluid domain is varied and for time step 
independence, the medium mesh is run with 1000, 2000 and 3000 
time steps per flapping cycle.  

Grid 
No of time 
steps per 

cycle 

No of cells in 
inner domain 

mesh 
 തതതതതࢇࡼ࡯ തതതࡸ࡯

1. Grid independence 
Coarse 

2000 

32 × 30 × 54 1.064 2.423 
Medium 44 × 42 × 78 1.082 2.550 
Fine 62 × 60 × 108 1.085 2.630 
2. Time independence 

Medium 

1000 

44 × 42 × 78 
1.102 2.633 

2000 1.079 2.548 
3000  1.068 2.508 

Table 1. Results of grid independence and time step independence studies 

The results in table 1 indicate that the difference is within 3% for 
the average lift coefficient (	ܥ௅തതതത ) and average aerodynamic power 
coefficient (ܥ௉௔തതതതത ), between the medium and the fine grid. The 
medium grid with 2000 and 3000 time steps/cycle also gives less 
than 3% variation in the results. Therefore, the medium grid with 
2000 time steps/cycle was chosen for the simulations.   

 

 

Figure 5. (a) Fluid solver validation and (b) FSI solver validation.  

The fluid solver validation is performed against the experiments 
of Nagai et al. [7] and the computational study of Naidu et al. [8]. 
The time histories of the lift coefficient (ܥ௅	) in figure 5(a) 
indicate that our simulations are in good agreement with both the 
experimental and CFD results. In the FSI solver validation, the 
time history of wing tip displacement normalized by the root 
chord given in figure 5(b) also matches well with both the 
experimental and CFD results of Aono et al. [2]. 

 
Results and Discussions 

In this section, the detailed analysis of the performance of wing 
shapes is presented. The time histories of ܥ௅ in figure 6(a) show 
an increase in the peak lift with ݎଵഥ  for both the rigid and the 
flexible wing shapes. The flexible wings produce higher peak lift 
than their rigid equivalents and this increase is approximately 
22%, 26% and 28% for the ݎଵഥ  = 0.43, 0.53 and 0.63 wings 
respectively. Moreover, there is a significant change in the timing 
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of peaks for the flexible ݎଵഥ  = 0.63 wing. For instance, in the up 
stroke, while the first and second lift peaks in the rigid ݎଵഥ  = 0.63 
wing occur at t/T = 0.143 and 0.335 respectively, the first peak in 
the corresponding flexible wing occurs early, by t/T = 0.05, and 
the second one with a delay, by t/T = 0.05. All the wings attain 
zero lift before the stroke reversal, between t/T = 0.436 and 
0.455, because of advanced flip kinematics. The minimum lift for 
the rigid and flexible ݎଵഥ  = 0.63 wings has a time difference of 
about t/T = 0.023, as the flexible wing achieves a minimum lift of 
-1.879 at t/T = 0.491, very close to the stroke reversal. This 
minimum lift is 82.2% less in magnitude than the corresponding 
rigid wing.  

 

Figure 6. Time history of (a) ܥ௅  , (b) ܥ௉௔  and (c) ܥ௉௜ of all wings. 

Similar to the peak ܥ௅, the peak aerodynamic power (ܥ௉௔ ) and 
the peak inertial power (ܥ௉௜ ) also increase with an introduction 
of flexibility for all wing shapes. This increase in ܥ௉௔ is 21%, 
33%, 52% and ܥ௉௜	is 41%, 61%, 63% for the ݎଵഥ  = 0.43, 0.53 and 
0.63 wings, respectively. Compared with low ݎଵഥ   wings, there is a 
drastic increase in power requirements for the flexible ݎଵഥ  = 0.63 
wing. Since there is a phase difference between the inertial and 
aerodynamic forces during a flapping cycle, the inertial and 
aerodynamic power requirements vary over a flapping cycle. 
Since the ݉∗of flexible wings is high, the wing deformation is 
mainly governed by the inertial effects. With less fluid damping, 
it is not surprising to observe higher inertial power requirement 
for flexible wings.  

 

Figure 7. Iso-Q surfaces filled with pressure coefficients at t/T = 0.1 on 
(left) ݎଵഥ  = 0.43, (centre) ݎଵഥ  = 0.53 and (right) ݎଵഥ  = 0.43 wings. (a-c) rigid 
wings and (d-f) flexible wings. 

The flow features on the wings are visualized at t/T = 0.1, 0.4 and 
0.5 using the iso Q-surfaces (Q = 10) filled with the pressure 
coefficients. Here the strength of the vortices is defined 

qualitatively in terms of the suction pressure coefficients. As the 
leading edge of the flexible wings is assumed rigid, the LEV of 
rigid and flexible wings for a given shape is similar and the 
difference in lift and power with flexibility is attributable to the 
TEV, RV, and TV structures.   

 

Figure 8. Iso-Q surfaces filled with pressure coefficients at t/T = 0.4 on 
(left) ݎଵഥ  = 0.43, (centre) ݎଵഥ  = 0.53 and (right) ݎଵഥ  = 0.43 wings. (a-c) rigid 
wings and (d-f) flexible wings. 

In figure 7, at t/T = 0.1, the wings are at the start of the up stroke. 
Here the rigid ݎଵഥ  = 0.43 and 0.53 wings produce more lift because 
their TEV and TV (figure 7(a and b)) have developed earlier than 
the flexible wings (figure 7(d and e)). In contrast, the rigid ݎଵഥ  = 
0.63 wing produces comparatively less lift than the flexible wing 
because the large deformation of trailing edge in the flexible  
wing results in a very strong TV and TEV (figure 7(f)). These 
observations are consistent with the trend of ܥ௅ in figure 6(a).   

 

Figure 9. Iso-Q surfaces filled with pressure coefficients at t/T = 0.5 on 
(left) ݎଵഥ  = 0.43, (centre) ݎଵഥ  = 0.53 and (right) ݎଵഥ  = 0.43 wings. (a-c) rigid 
wings and (d-f) flexible wings. 

In figure 8, at t/T = 0.4, the wing is about to reach the end of the 
up stroke as it also pitches about the LE to change direction 
during pronation. At this moment, all the flexible wings produce 
greater ܥ௅ in figure 6(a) than the corresponding rigid wings. The 
iso-Q surfaces show that the TV of all the wings, except the 
flexible ݎଵഥ  = 0.63 (figure 8(f)), is detached or about to detach 
from the wing tip at this time instant. Flexibility results in an 
induced negative camber in the flexible ݎଵഥ  = 0.63 wing which 
helps in keeping the strong TEV and TV close to the wing 
surface. This results in a comparatively high ܥ௅ of flexible ݎଵഥ  = 
0.63 wing. At t/T = 0.5, as the wing approaches a stroke reversal, 
the pitch angle is 68.3º and the LEV, TEV, TV, and RV are all on 
the underside of the wings. Therefore, there is almost zero or 
negative lift (figure 6(a)) on all the wings.  While the TV and 
TEV are detached from the rest of the wings, there is a strong 
region of very low pressure, seen in figure 9(f), on the underside 
of the flexible ݎଵഥ  = 0.63 wing that results in a ܥ௅ of -1.72. It is the 
same TEV structure that produced a high ܥ௅ on this wing at t/T = 
0.4 in figure 8(f).  

It is evident from the above analysis that the wing shape and 
flexibility influences the production of forces and the 
requirement of aerodynamic and inertial power during a flapping 
cycle. The effects of flexibility are more pronounced on high  ݎଵഥ  
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wings because there is more area close to the wing tip, where the 
flapping velocity and the bending moments are high. Higher lift 
associated with high ݎଵഥ  rigid and flexible wings is accompanied 
by high power requirements. While comparing the time histories 
of lift of the rigid and flexible wings equivalents in figure 6(a), 
clearly, there are different phases in the flapping cycle, where 
one dominates over the other. For example, in a half stroke (t/T = 
0-0.5), comparatively more lift in a flexible ݎଵഥ  = 0.63 wing at t/T 
= 0.035-0.185 and t/T = 0.345-0.455 is significantly offset by 
relatively less lift at t/T = 0-0.035 and t/T = 0.185-0.345. 
Therefore, it is useful to consider the mean values for these cases. 
In addition, the power economy (PE) defined in equation (3) is 
used to measure the efficiency of lift production of the hovering 
wings.  

ܧܲ                                      ൌ	ܥ௅തതത / ܥ௉തതത                         (3) 

The 	ܥ௅തതതത in figure 10(a) shows an increase with ݎଵഥ  for both the 
rigid and flexible wings. In comparison with rigid, the high ݎଵഥ  
flexible wing (ݎଵഥ  = 0.63) exhibits a greater increase in	ܥ௅തതതത, 
however, it is clearly at the cost of high PE. For hover, the wing 
should ideally use minimum input power and produce enough lift 
to support the weight of the insect at the same time. The PE 
plotted against the 	ܥ௅തതതത as a function of ݎଵഥ  in figure 10(b) helps us 
to determine efficient wing shapes. It is observed that the flexible 
wing shapes cover a wider range of lift and give PE comparable 
to the rigid wing shapes. For a given 	ܥ௅തതതത , a flexible wing with 
comparatively lower ݎଵഥ   than the rigid wing can give similar PE. 
For instance, a rigid wing with  ݎଵഥ  of about 0.57 and a flexible 
wing with ݎଵഥ  of 0.53 can both give a 	ܥ௅തതതത of 0.96 while 
maintaining PE of 0.5. It is, thus, preferable to use low ݎଵഥ   wings, 
if flexibility is taken into account.  

 

Figure 10. (a) ܥ௅തതത	and PE vs. ݎଵഥ  and (b) PE vs. ܥ௅തതത	for different wings. 

Conclusion 

Based on insect-inspired kinematics, we studied the effect of 
wing shapes and flexibility on the hovering performance of wings 
using a sharp interface IBM coupled with a structure dynamics 
solver for FSI simulations. Our results show that for a given 
wing, flexibility improves the lift production, but requires more 
aerodynamic and inertial power inputs. For both the rigid and 
flexible wings, high ݎଵഥ  gives higher peak lift and 	ܥ௅തതതത at the cost of 
high peak input aerodynamic and inertial powers. For flexible 
wings, especially the ݎଵഥ  = 0.63, the timings and magnitude of lift 
vary as the high lift peak during the up stroke and down stroke 
are accompanied by negative lift at the commencement of each 
stroke.  The wing deformation in flexible wings strongly affects 

the lift force production and power requirements as it changes the 
time evolution of TV and TEV structures during a flapping cycle. 
It is further concluded that the flexible wings require lower ݎଵഥ  
than their rigid equivalents to maintain the required lift with 
almost no loss in PE.  
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